
A Brief Introduction to Ternary Logic

Jorge Pedraza Arpasi ∗

7th November 2003

1 Introduction

Based on the work of Ivan Guzmán de Rojas [1] and some basic notions of binary logic and

algebra of Boole, we will introduce and show some elementary properties of ternary logic.

These properties can be resumed as follows: a) Ternary logic is a generalization of binary

logic, b) it has not a structure to be a Boolean algebra, c) it is based on more than three

basic operations, and d) its tautologies and contradictions are more complicated for find

out. The generalization is in the sense that if one proposition p is true(false) under the rules

of binary logic then it is true(false) under the ternary logic. The lack of Boolean structure,

in ternary logic, is compensated by powerful tools for inferential analysis [1].

In this note, for the binary case, we will use the values {0, 1} which means true=1 and

false=0. Whereas that for ternary case we will use the values {0, 1, 2} which means true=1,

false=2, and “perhaps true perhaps false”=0. This notation is the most adequate for a later

algebraic analysis. By x we will mean a simple statement or proposition whereas by p or f

we will mean a composed proposition which depends on other simple propositions, hence we

also refer they as functions.

∗The author is maintainer of the website Aymara Uta Internet: www.aymara.org.

1

2 Binary Logic(Classical Logic)

We can see the binary logic as a system L whose elements called propositions or state-

ments are valued on the set {0, 1} [2]. This set {0, 1} we denote as being Z2. Thus, if x is

a proposition, the value of x can be seen as a mapping ν : L → {0, 1} such that

ν(x) =

 1; if x is true

0; if x is false

It is standard, in almost all the logical literature, to ignore the mapping ν. Therefore,

for the sack of practical purposes, it is assumed that ν(x) = x and from this, x = 1 means

x is true and x = 0 means x is false. Over L are defined the following basic operations

• The negation ¬ (unary operation “not”)

• The disjunction ∨ (binary operation “or”)

• The conjunction ∧ (binary operation “and”)

The system L is closed under any of these three operations, in the sense that if x, y ∈ L,

then both ¬x ∈ L, x ∨ y ∈ L, and x ∧ y ∈ L. From these three operations we can derive

16 binary operations, among them the implication Imp(x, y) = x → y and the equivalence

Equiv(x, y) = x ↔ y. The value of these basic operations and any other composed proposi-

tions depend on the value of each component x and y as can be seen in the true table for

these operations shown in Table 1

Another way to describe propositions based on the above basic operations is by consider-

ing them as functions. In this way, the unary operator “negation” is a function f : Z2 → Z2,

and a binary operation such as the “disjunction” is a function f : Z2
2 → Z2. In general, by

combining the three basic operations we can define binary logic functions as mappings

f : Zn
2 → Z2.

When n = 1 we have one-variable functions f(x), and there are 221
= 4 of these kind

of functions which are: the Identity or Affirmation id(x), the Negation N(x), the Tautology

2

Neg(x) Disj(x, y) Conj(x, y) Imp(x, y) Equiv(x, y)

x y ¬x x ∨ y x ∧ y x → y x ↔ y

1 1 0 1 1 1 1

1 0 1 0 0 0

0 1 1 1 0 1 0

0 0 0 0 0 1

Table 1: Basic operations or functions in binary logic

τ(x) and the Contradiction γ(x). All these four functions are also called modal functions

of x and they are shown in the Table 2

x id(x) N(x) τ(x) γ(x)

1 1 0 1 0

0 0 1 1 0

Table 2: All the one-variable binary functions

When n = 2 we have two-variable functions f(x, y), and there are 222
= 16 of these

kind of functions which are shown in the Table 3. Notice, in that Table, that f2(x, y) is

the disjunction, f8(x, y) is the conjunction, f5(x, y) is the implication, f7 is the equivalence,

whereas f1, f16 are the tautology and the contradiction functions, respectively.

x y f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15 f16

1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0

1 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0

0 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0

0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

Table 3: All the two-variable binary functions

For three variables we will have 223
= 256 different functions f(x, y, z). In general there

3

exist 22n
different binary logical functions f(x1, x2, . . . , xn) of n variables.

Example 1 Functions or propositions of one variable

Let x be the statement “Peter is tall”. Then, we can construct all the four one-variable

functions;

• id(x) =Peter is tall,

• N(x) = ¬x = Peter is not tall,

• τ(x) = x ∨ ¬x = Peter is tall or he is not tall,

• γ(x) = x ∧ ¬x = Peter is tall and he is not tall

Example 2 Some functions or propositions of two variables

Let x, y be the statements “Peter is tall” and “Peter is thin”, respectively. Then we can

construct the following functions, among all the 16 possible ones (Table 3;

• f2(x, y) = x ∨ y = Peter is tall or thin (disjunction)

• f8(x, y) = x ∧ y = Peter is tall and thin (conjunction)

• f5(x, y) = x → y = If Peter is tall then he is thin (implication)

• f7(x, y) = x ↔ y = Peter is tall if only if he is thin (equivalence)

• f1(x, y) = τ(x, y) = (x∧ y)∨ (¬x∨¬y) = Peter is tall and thin, or he is not tall or he

is not thin (tautology)

• f16(x, y) = γ(x, y) = (x ∨ y) ∧ (¬x ∧ ¬y) = Peter is tall or thin, and he is not tall and

he is not thin (contradiction)

4

1 x ∨ y = y ∨ x 5 x ∧ y = y ∧ x

2 (x ∨ y) ∨ z = x ∨ (y ∨ z) 6 (x ∧ y) ∧ z = x ∧ (y ∧ z)

3 x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ r) 7 x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z)

4 x ∨ γ = x 8 x ∧ τ = x

9 x ∨ ¬x = τ 10 x ∧ ¬x = γ

Table 4: Boolean properties of binary logic, where τ=tautology and γ=contradiction

3 Algebra of Boole

Definition 1 Let S be a finite set. Then the power set of S, denoted by P(S), is the set

of all subsets of S.

If the set S has |S| elements then this power set P(S) has 2|S| elements (subsets)

Example 3 Let S be the set by S = {a, b, c}.

We have that S has three elements, then the power set P(S) has 23 = 8 elements(subsets).

In effect, P(S) = {∅, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}}, where ∅ is the empty set

and {a, b, c} is the full set S itself.

Definition 2 An Algebra of Boole is a non empty set B with two binary operations, the

sum (+), and the product (·), and one unary operation, the complement (′); satisfying the

following conditions:

1. The sum is commutative, that is, x + y = y + x, for all x, y ∈ B.

2. The sum is associative, that is, (x + y) + z = x + (y + z), for all x, y, z ∈ B.

3. The sum is distributive with respect the product, that is, x + (y.z) = (x + y).(x + z),

for all x, y, z ∈ B.

4. There exists an neutral element for the sum, 0 ∈ B, such that x + 0 = x for all x ∈ B.

5. The product is commutative, that is, x.y = y.x, for all x, y ∈ B.

5

disjunction ∨ 7→ + Boolean sum

conjunction ∧ 7→ · Boolean product

negation ¬ 7→ ′ Boolean complement

tautology τ 7→ 1 product identity

contradiction γ 7→ 0 sum identity

Table 5: Operations and identities of binary logic and Boolean algebra

6. The product is associative, that is, (x.y).z = x.(y.z), for all x, y, z ∈ B.

7. The product is distributive with respect the sum, that is, x.(y + z) = (x.y) + (x.z), for

all x, y, z ∈ B.

8. There exists an neutral element for the product, 1 ∈ B, such that x.1 = x for all x ∈ B.

9. x + x′ = 1 for all x ∈ B

10. x.x′ = 0 for all x ∈ B

3.1 Examples

Example 4 Consider a class L of binary logical propositions, that is, with values on Z2 =

{0, 1}, with the operations negation (¬), disjunction (∨), and conjunction (∧), then L with

these operations is an infinite boolean algebra

By making the correspondences of the Table 5 we can verify that the properties of L

shown in the Table 4 satisfy the definition of Boolean algebra.

Example 5 Consider a finite set S, then the power set P(S); with the set operations: union

of sets ∪, the intersection of sets ∩, and the complement of a set ′; is a finite boolean algebra.

In effect, any subsets A, B and C of S hold the properties of the Table 6 and therefore P(S)

is a finite Boolean Algebra.

6

1 A ∪B = B ∪ A 5 A ∩B = B ∩ A

2 (A ∪B) ∪ C = A ∪ (B ∪ C) 6 (A ∩B) ∩ C = A ∩ (B ∩ C)

3 A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C) 7 A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C)

4 A ∪ ∅ = A 8 A ∩ P(S) = A

9 A ∪ A′ = P(S) 10 A ∩ A′ = ∅

Table 6: The Boolean structure for sets with the operations ′, ∪, and ∩

4 Ternary logic

As ternary logic we will mean a system L whose elements called propositions or statements

are valued in the set {0, 1, 2}. This set we denote by Z3. If x is a proposition, the value of

x can be seen as a mapping ν : L → {0, 1, 2} such that;

ν(x) =


1; if x is true

0; if x is perhaps true, perhaps false

2; if x is false

From this, we have that if ν(x) = 1 (true) under the rules of binary logic then also

ν(x) = 1(true) under the ternary logic laws. Analogously for the false value. On the other

hand, for the same considerations made for binary logic case, we can avoid ν by making

ν(x) = x. Then over L are defined the following basic operations, [1];

• The negation ¬ (unary operation “not”)

• The disjunction ∨ (binary operation “or”)

• The conjunction ∧ (binary operation “and”)

• The implication → (binary operation “if...then”)

The system L is closed under any of these four operations, in the sense that if x, y ∈ L

then ¬x ∈ L, x ∨ y ∈ L, x ∧ y ∈ L, and x → y ∈ L. Notice that the implication, in this

case, is not derived from de other three basic operations as it happens in the binary logic.

7

Neg(x) Conj(x, y) Disj(x, y) Imp(x, y) Equiv(x, y)

x y ¬x x ∧ y x ∨ y x → y x ↔ y

1 1 2 1 1 1 1

1 0 0 1 0 0

1 2 2 1 2 2

0 1 0 0 1 1 0

0 0 0 0 1 1

0 2 2 0 0 0

2 1 1 2 1 1 2

2 0 2 0 1 0

2 2 2 2 1 1

Table 7: Basic operations in the ternary logic

The value of ¬x, x∨ y, x∧ y, and x → y and other composed operations depend on the

value of each component x and y. These values can be obtained by using the true table as

the Table 7 shows. In such Table 7 also it is shown the equivalence operation which can be

derived from the conjunction and implication.

Another way to describe the above basic operations is by considering them as functions.

The unary operator negation is a function f : Z3 → Z3, and a binary operator such as the

disjunction is a function f : Z2
3 → Z3. In general, we can define ternary logical functions

as mappings f : Zn
3 → Z3.

When n = 1 we have one-variable functions f(x), and there are 331
= 27 of these func-

tions, among them are, the Identity or Affirmation id(x), the negation N(x), the Tautology

τ(x) and the contradiction γ(x). All these 27 functions are also called modal functions of

x and they are shown in the Table 8

When n = 2 we have two-variable functions f(x, y), and there are 332
= 19683 of them.

It is impossible, in a single page, to show the true table for each one.

8

x f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15 f16 f17 f18

1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0

0 0 0 0 2 2 2 1 1 1 0 0 0 2 2 2 1 1 1

2 2 1 0 2 1 0 2 1 0 2 1 0 2 1 0 2 1 0

x f19 f20 f21 f22 f23 f24 f25 f26 f27

1 2 2 2 2 2 2 2 2 2

0 0 0 0 2 2 2 1 1 1

2 2 1 0 2 1 0 2 1 0

Table 8: All the one-variable ternary functions

In the same way we can compute that there are 333
= 7625597484987 three-variable different

functions. In general there exist 33n
different ternary logical functions f(x1, x2, . . . , xn) of n

variables.

Example 6 Some functions or propositions of one variable

Let x be the simple statement “it is raining”, then we show 6 of the 27 one-variable

ternary functions f(x)

• f1(x) = id(x) = it is raining (affirmation)

• f20(x) = N(x) = ¬x = it is not raining (negation)

• f8(x) = τ(x) = x → x = if it is raining then it is raining (tautology)

• f22(x) = γ(x) = ¬(x → x) = it is not true that if it is raining then it is raining

(contradiction)

• f2(x) = x ∨ ¬x = it is raining, or it is not raining.

This function is not a tautology as it happens in the binary logic case. Also this

9

example shows that condition 9 of the definition of Algebra of Boole can not be hold

by the ternary logic system. Therefore, the ternary logic system can not have a Boolean

Algebra structure.

• f19(x) = x ∧ ¬x = it is raining, and it is not raining.

This function is not a contradiction as it happens in the binary logic case. Also this

example shows that condition 10 of the definition of Algebra of Boole can not be hold

by the ternary logic system. Therefore, the ternary logic system can not have a Boolean

Algebra structure.

Example 7 Some functions or propositions of two variables

Let x, y be the propositions “it is raining” and “the sun is shining”, respectively. Then we

write some of the 19683 two-variable functions

• τ(x, y) = ¬(x∨ y) ↔ (¬x∧¬y) =It is not true that it is raining or the sun is shining,

if only if it is not raining and the sun is not shining.

By making m11(x, y) = ¬(x ∨ y) and m12(x, y) = ¬x ∧ ¬y we can verify in the Table

9 that this is a tautology called the first law of the De Morgan. Analogously for

m21(x, y) = ¬(x ∧ y), and m22(x, y) = ¬x ∨ ¬y we can see that the second law of the

De Morgan holds in ternary logic.

• α(x, y) = ¬x ∨ y = it is not raining or the sun is shining.

The true table of this function is shown in the Table 10 together the true table of the

implication and we can verify over there, that α(x, y) and imp(x, y) are not equivalent

as it happens in binary logic

• β(x, y) = ¬y → ¬x = If the sun is not shining then it not raining.

We can verify in the Table 10 that it is equivalent with the implication as the binary

case.

10

x y ¬x ¬y x ∨ y x ∧ y m11 m12 m21 m22

1 1 2 2 1 1 2 2 2 2

1 0 2 0 1 0 2 2 0 0

1 2 2 1 1 2 2 2 1 1

0 1 0 2 1 0 2 2 0 0

0 0 0 0 0 0 0 0 0 0

0 2 0 1 0 2 0 0 1 1

2 1 1 2 1 2 2 2 1 1

2 0 1 0 0 2 0 0 1 1

2 2 1 1 2 2 1 1 1 1

Table 9: The De Morgan laws in ternary logic

• δ(x, y) = (x → y) ∧ (y → x) = If it not raining then the sun is shining, and if the sun

is shining then it is raining. We can see in the Table 11 that it is equivalent to the

“equivalent” function.

5 Conclusions

We have shown that, at least, at this elementary level that there exist four main properties

of ternary logic;

1. The ternary logic is one generalization of the binary(classic) case. Such generalization

is in the sense of each proposition that is true under the rules of the binary logic will

be true under the rules of the trivalent case. Analogously for the false propositions.

2. In ternary logic the construction of tautologies is more difficult than in binary logic.

Worse for the construction of contradictions.

3. For the ternary logic, the implication (x → y) operation of two propositions x, y can

11

x y ¬y ¬x β α imp(x, y)

1 1 2 2 1 1 1

1 0 0 2 0 0 0

1 2 1 2 2 2 2

0 1 2 0 1 1 1

0 0 0 0 1 0 1

0 2 1 0 0 0 0

2 1 2 1 1 1 1

2 0 0 1 1 1 1

2 2 1 1 1 1 1

Table 10: (x → y) ↔ (¬x ∨ y) fails and (¬y → ¬x) ↔ (x →) holds in ternary logic

x y x → y y → x δ(x, y) equiv(x, y)

1 1 1 1 1 1

1 0 0 1 0 0

1 2 2 1 2 2

0 1 1 0 0 0

0 0 1 1 1 1

0 2 0 1 0 0

2 1 1 2 2 2

2 0 1 0 0 0

2 2 1 1 1 1

Table 11: The derivation of the equivalence law in ternary logic

12

not be derived from the basic operations (¬), (∨), and (∧) as it happens in the binary

case.

4. The ternary logic can not have a Boolean algebra structure whereas the binary logic

can have. The proof of this conclusion is given by the functions f2 and f19 of the Table

8.

References

[1] Guzmán de Rojas, Ivan; Logical and Linguistic Problems of Social Communication with

Aymara People; International Development Research Centre (IDRC), Ottawa, Canada,

1984.

[2] Gersting, Judith L. Mathematical Structures for Computer Science, Fourth Ed., W. H.

Freeman, New York, 1998.

13

